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Abstract 

The CBOE volatility index (VIX) is a representative barometer of the 

overall sentiment and volatility of the financial market. This paper seeks to 

apply random forest and its variable importance measure to forecasting the 

VIX index. Compared to the previous literature which has found it difficult to 

outperform the pure HAR process in terms of forecasting the VIX index due to 

its persistent nature, random forest can produce forecasts that are 

significantly more accurate than the HAR and augmented HAR models for 

multi-days forecasting horizons. This paper shows that the forecasting 

accuracy of random forest could be further improved by systematically 

selecting the optimal number of the most important covariates from a dataset 

of 298 macro-finance variables, while using the Boruta algorithm which ranks 

the variables based on random forest’s variable importance measure. The 

superior predictability of this method is more evident with longer forecasting 

horizons. 

 

Keywords : Random Forest, Boruta Algorithm, Machine Learning, VIX Index, 

Volatility Forecasting 
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1. INTRODUCTION 

The implied volatility index of the Chicago Board Options Exchange (CBOE), 

commonly known as the VIX index, represents the market’s estimate of the 

future volatility of the S&P 500 over the next 30 calendar days. It is derived 

from the bid/ask quotes of options on the S&P 500 index, and it is 

disseminated on a real-time basis. As it is calculated directly based on option 

prices rather than being solved out of an option pricing formula like the Black-

Scholes, the VIX index is free from the measurement errors that were present 

in the previous implied volatility measures.  

The VIX index attracts substantial attention in the financial market. Not only 

is it widely traded in the form of VIX futures for hedging or speculative 

purposes, but it is also acknowledged as the world’s leading barometer of 

investor sentiment and market volatility. Thus, accurate forecasts of the VIX 

index in the short and long term can provide crucial information to participants 

in the financial market. 

There are numerous research topics related to implied volatility and the VIX 

index and, unsurprisingly, there has been research focusing directly on 

forecasting the VIX index. Degiannakis (2008) considers realized and 

conditional volatility of the S&P 500 as exogenous covariates in modelling VIX 

in an ARFIMA model. However, he concludes that the VIX index is hard to 

forecast, and that it does not seem to be closely connected to the volatility of 

the underlying index. Konstantinidi et al. (2008) model seven different implied 

volatility indices including VIX in a multivariate VAR framework, and they 

confirmed the presence of implied volatility spillover between various markets. 

However, their method did not succeed in deriving significantly improved 

forecasts.  

Fernandes et al. (2014) apply a heterogeneous autoregressive (HAR) model 

coupled with neural network approximation to capture non-linearity for 

forecasting VIX; they conclude that it is very hard to exceed the performance 
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of the pure HAR process due to the highly persistent nature of the VIX index. 

Conversely, Psaradellis et al. (2016) find significant evidence of strong non-

linearity in VIX by employing a HAR process combined with support vector 

regression model, thereby improving upon the results of the one-day-ahead 

forecasts of the pure HAR model.1 

However, most of the literature focuses solely on one-day-ahead forecasts 

of VIX, while suggesting the multi-day-ahead forecast problem as a topic of 

future research. Forecasting VIX on a longer horizon can be a significant 

matter in several aspects. For an investor who adjusts his/her portfolio 

including VIX futures on a multi-day basis while considering trading costs, 

multi-day-ahead forecasts may be more useful than one-day-ahead 

forecasts. For a market participant searching for clues about the future 

volatility and direction of the overall market, an accurate multi-day-ahead 

forecast of VIX can provide significant information. Moreover, most of the 

studies on VIX forecasting consider only a handful of exogenous covariates, if 

any, and they do not make use of the “big”datasets that are easily available 

nowadays.  

The main motivation of this paper is to fill these research gaps. We focus on 

multi-day-ahead forecasting of VIX of up to 22 trading days, and we also 

utilize a high-dimensional dataset including 298 macro-finance variables. We 

investigate whether the findings of Fernandes et al. (2014) are still valid when 

utilizing a high-dimensional dataset. Another feature of this paper is to 

investigate a random forest procedure that systematically selects the most 

important variables. Specifically, we adopt the Boruta algorithm to select 

macro-finance variables and choose, via cross-validation, the optimal number 

                                           
1 Ballestra et al. (2019) consider the directional forecast of VIX Futures instead of the 

VIX index, and they use a feed-forward neural network model with non-lagged 

explanatory variables that are available only a few hours before the opening of the 

CBOE. They find that the neural network model with only one most recent exogenous 

variable is the superior model. 
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of the most important variables that are used for random forest. To the best of 

our knowledge, this is the first study to apply a systemic variable selection 

mechanism based on the Boruta algorithm in time series forecasting.  

The main findings of this paper are as follows: First, the random forest 

method provides superior multi-day-ahead out-of-sample forecasts; while it 

does not produce better one-day-ahead forecasts, it outperforms other 

benchmark models in 5/10/22-days-ahead forecasts. Moreover, the relative 

accuracy of the random forest method compared to benchmark models 

becomes more evident as the forecasting horizon increases. 

Second, the random forest method using only the optimal number of the 

most important covariates from the Boruta algorithm can produce significantly 

superior out-of-sample forecasts over that using all available covariates. 

This is consistent with the existing view noted in Kohavi (1997) suggesting 

that it is important to select the most important variables when given a high-

dimensional dataset. This finding is still valid when we consider more recent 

data and the various machine learning methods described in Appendix A. 

The rest of the paper is organized as follows: The next section describes 

our methodology and briefly explains the random forest method and Boruta 

algorithm. The third section describes the data, forecasting procedure, and 

benchmark models. The fourth section reports the main results, including the 

variable selection, choice of optimal number of variables, forecast results, and 

robustness check. Lastly, the fifth section concludes the paper. 

 

2. METHODOLOGY 

The recent advances in machine learning (ML) methods and the increased 

accessibility to “big” datasets have led to opportunities to approach the 

problem of forecasting economic time series in a novel way. While traditional 

econometric applications are centered around parameter estimation, ML 
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methods revolve around the problem of prediction—specifically, of producing 

predictions of 𝑦𝑦� from x. Where traditional econometric models rely on careful 

assumptions about the underlying data-generating-process, ML methods 

seek to discover complex structures that are not specified in advance. They 

manage to fit complex and very flexible functional forms to the data without 

simply overfitting, and they produce relatively accurate out-of-sample 

predictions (Mullainathan, 2017). 

Medeiros et al. (2019) is one of the recent studies that has highlighted the 

benefits of applying ML methods to economic time series forecasting. It 

applies a wide range of ML models to forecasting US inflation, and it finds that 

ML methods combined with high-dimensional datasets can produce more 

accurate forecasts than traditional benchmark models. Specifically, it reports 

that a particular model, random forest (RF) of Breiman (2001), consistently 

outperforms all other models due to its ability to catch nonlinearities and its 

variable selection mechanism. Moreover, it reports that the superiority of 

random forest becomes more evident in settings where the forecasting horizon 

becomes longer as well as during the periods when the time series is more 

volatile. 

This research seeks to discover how ML methods can provide benefits to 

forecasting the VIX index, especially with a focus on the random forest 

method and its variable selection mechanism through variable importance 

measures. The distinct features of our methodology are that we adopt the 

Boruta algorithm by Kursa et al. (2010) to select the most important 

covariates and that we choose the optimal number of selected covariates in 

the random forest method.  

One of the strengths of machine learning methods such as RF is their ability 

to handle datasets with high-dimensional covariates. However, many machine 

learning algorithms exhibit decreased accuracy when the number of variables 

is significantly higher than optimal (Kohavi et al. 1997). Thus, when given a 
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high-dimensional dataset, it is often an important matter to distinguish and 

select out the most important variables, not only for technical efficiency, but 

also to enhance accuracy in solving the relevant problem. Our results in 

Section 4 confirm that RF using the optimal number of selected covariates, as 

opposed to all available high-dimensional data, provides better forecasts.  

Our methodology consists of the following steps: 

Step 1: Using the Boruta algorithm, obtain the rankings of the covariates in 

high-dimensional data. 

Step 2: Choose the optimal number of the most important covariates via 

cross-validation. 

Step 3: Using only those selected covariates from the previous step, 

implement the random forecast method and produce a forecast. 

 

We briefly explain the random forest method and Boruta algorithm in the 

following subsections.  

 

2.1 Random Forests and Permutation Importance 

Random forest has its roots in classification and regression trees (CART). 

Introduced by Breiman et al. (1984), it is a simple model which partitions the 

predictor space into rectangles using binary splits, then uses those splits to 

determine the outcome prediction. That is, it divides the set of possible values 

of the predictors 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑃𝑃  into J distinct and non-overlapping regions, 

𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝐽𝐽. For every observation that falls into region 𝑅𝑅𝐽𝐽, the same prediction 

is made, which is simply the mean of the response values for the training 

observations in 𝑅𝑅𝐽𝐽 . For a regression tree, the objective is to identify the 

partition 𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝐽𝐽 such that the residual sum of squares (RSS, henceforth) 

given by  
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 �� (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑅𝑅𝑗𝑗)
2

𝑖𝑖∈𝑅𝑅𝑗𝑗

𝐽𝐽

𝑗𝑗=1

 (1) 

is minimized. 

It is apparent that it becomes computationally infeasible to consider every 

possible partition of the predictor space. As a result, a top-down approach 

known as recursive binary splitting is utilized. The tree diagram in the left of 

Figure 1 illustrates a widely used example from Hastie et al. (2001) in which 

a tree model is grown in a regression setting with two predictors – 𝑋𝑋1 and 𝑋𝑋2. 

On the top node (or split) of the tree, the predictor space is partitioned into 

two regions at 𝑋𝑋1 = 𝑡𝑡1. Then, the region to the left of 𝑋𝑋1 = 𝑡𝑡1 is partitioned 

at 𝑋𝑋2 = 𝑡𝑡2 and the region to the right is partitioned at 𝑋𝑋1 = 𝑡𝑡3. Finally, the 

region to the right of 𝑋𝑋1 = 𝑡𝑡3 is partitioned at 𝑋𝑋2 = 𝑡𝑡4. At each node of the 

tree, the best split is determined such that the decrease in RSS due to the 

particular split is maximized. It is a greedy approach in that each split only 

considers the best one at that particular step, rather than looking ahead to also 

consider the future steps. The resulting partition of the predictor space is 

illustrated in the right diagram of Figure 1, where the five regions (or 

rectangles) 𝑅𝑅1, … ,𝑅𝑅5 correspond to the five terminal nodes in the tree diagram.  

 

<< Insert Figure 1 about here>> 

 

An obvious question one faces when growing a tree model is how large the 

tree should be grown. A very large tree could easily overfit the data, whereas 

a very small tree could miss out on important structures underlying in the data. 

Cost-complexity pruning is a strategy that is widely used to determine the 

optimal tree size. The idea is to grow a sufficiently large tree, then prune the 

tree back to obtain a subtree that minimizes the cost-complexity criterion that 

penalizes the size of the tree model.  

While having low model bias, a single tree model is typically known to be 
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less competitive with the best ML methods in terms of prediction accuracy 

due to its high variance. Random forest, introduced by Breiman (2001), seeks 

to reduce the variance of trees through a bootstrap aggregation (or bagging) 

approach. Thus, the idea is to average many noisy but approximately unbiased 

trees to achieve stability while taking advantage of the advantages of tree 

models.  

Random forest is an ensemble of a few hundred to thousands of unpruned 

trees, each trained on a bootstrap sample of the original data. When building a 

tree from a bootstrapped sample, RF uses m randomly selected input variables 

at each split.2 This random selection of potential predictors to be selected 

ensures that the trees in the forest are decorrelated to each other. For a 

regression problem, the prediction of RF for a new test point 𝑥𝑥 is defined as 

 𝑓𝑓𝑟𝑟𝑟𝑟(𝑥𝑥) =  
1
𝐵𝐵
�𝑇𝑇𝑏𝑏(𝑥𝑥)
𝐵𝐵

𝑏𝑏=1

 (2) 

where B is the number of trees in the whole forest and 𝑇𝑇𝑏𝑏(𝑥𝑥) corresponds to 

the prediction from the 𝑏𝑏𝑡𝑡ℎ tree. 

A desirable by-product of the bootstrap sampling process of RF is the 

presence of out-of-bag (OOB) samples, or the observations that are left out 

from each bootstrap sampling. These OOB samples can be utilized to measure 

the importance of each input variable. 

When the 𝑏𝑏𝑡𝑡ℎ  tree is grown, the OOB samples are run down the tree to 

calculate the OOB mean squared error (MSE):  

 𝑂𝑂𝑂𝑂𝐵𝐵𝑂𝑂𝑂𝑂𝑂𝑂𝑏𝑏 =  
1

𝑛𝑛𝑂𝑂𝑂𝑂𝐵𝐵,𝑏𝑏
 � (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖,𝑡𝑡)2

𝑛𝑛

𝑖𝑖=1:𝑖𝑖∈𝑂𝑂𝑂𝑂𝐵𝐵𝑏𝑏

 (3) 

where 𝑛𝑛𝑂𝑂𝑂𝑂𝐵𝐵,𝑏𝑏  denotes the number of observations in the 𝑏𝑏𝑡𝑡ℎ  OOB sample. 

                                           
2 A typical choice of m with 𝑚𝑚 =  �𝑝𝑝 for classification and m = p/3 for regression is 

known to perform well in most cases. 
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Then, the values of the 𝑗𝑗𝑡𝑡ℎ  variable 𝑋𝑋𝑗𝑗  are randomly permuted in the OOB 

data, and the permuted OOB MSE is calculated for the 𝑗𝑗𝑡𝑡ℎ variable: 

 

𝑂𝑂𝑂𝑂𝐵𝐵𝑂𝑂𝑂𝑂𝑂𝑂𝑏𝑏�𝑋𝑋𝑗𝑗 𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝�

=  
1

𝑛𝑛𝑂𝑂𝑂𝑂𝐵𝐵,𝑏𝑏
 � (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖,𝑡𝑡(𝑋𝑋𝑗𝑗 𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝))2

𝑛𝑛

𝑖𝑖=1:𝑖𝑖∈𝑂𝑂𝑂𝑂𝐵𝐵𝑏𝑏

 
(4) 

If 𝑋𝑋𝑗𝑗 does not have a predictive value for the given tree, random permutation 

of 𝑋𝑋𝑗𝑗 should make a small difference to the OOB MSE. On the other hand, if 𝑋𝑋𝑗𝑗 

is used as an important variable within the tree, then random permutation of 𝑋𝑋𝑗𝑗 

should lead to a significant increase in OOB MSE. Thus, the decrease in 

accuracy due to this permutation averaged over all trees is used as a measure 

of the importance of 𝑋𝑋𝑗𝑗.  

 
1
𝐵𝐵

 �(𝑂𝑂𝑂𝑂𝐵𝐵𝑂𝑂𝑂𝑂𝑂𝑂𝑏𝑏 −  𝑂𝑂𝑂𝑂𝐵𝐵𝑂𝑂𝑂𝑂𝑂𝑂𝑏𝑏�𝑋𝑋𝑗𝑗 𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝�)
𝐵𝐵

𝑏𝑏=1

 (5) 

This measure of variable importance in RF is known as the permutation 

importance. 

 

2.2 The Boruta Algorithm 

Until recently, there have been various methodologies developed for 

variable selection using RF variable importance measures. These 

developments have been particularly extensive in the bioinformatics and 

related fields, i.e., for identifying the important genetic variables for predicting 

certain disease status such as cancer. However, there does not yet appear to 

be consensus on a single outperforming variable selection methodology in a 

RF setting. 

Speiser et al. (2019) compare the performance of 13 different RF variable 

selection procedures that have been developed. It reports the OOB errors as 

well as the computation time of the different methodologies when they are 

applied to 311 different datasets. That study reports that the Boruta algorithm 
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by Kursa and Rudnicki (2010) is one of the better performing procedures 

overall in terms of OOB errors, and it is especially preferrable in high-

dimensional settings with over 50 predictors.  

The Boruta is a wrapper algorithm built around RF that provides a stable 

selection of the important variables from the dataset. The Z-score, which is 

derived for each variable by dividing the permutation importance measure by 

its standard deviation, is used as the measure of selection. Moreover, it 

extends the dataset by adding variables that are random by design. For each 

variable in the dataset, it creates a ‘shadow attribute’ which is obtained by 

shuffling the values of the original variable.   

In detail, the Boruta algorithm consists of the following steps:  

1. Extend the dataset by adding copies of all variables.  

2. Shuffle the added variables to remove their correlations with the 

response. (Shadow attributes) 

3. Run a random forest on the extended dataset and collect the computed Z 

scores. 

4. Find the maximum Z score among shadow attributes (MZSA), then assign 

a hit to every variable that scored better than MZSA. 

5. For each variable with undetermined importance, perform a two-sided 

test of equality with the MZSA. 

6. Deem the variables that have significantly lower importance than MZSA 

as `'unimportant' and permanently remove them from the dataset. 

7. Deem the variables that have significantly higher importance than MZSA 

as `'important'. 

8. Remove all shadow attributes. 

9. Repeat the procedure until the importance is assigned for all the variables 

or the algorithm has reached the previously set limit of the random forest runs. 

 

Through an iterative process of eliminating variables deemed unimportant, 
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the Boruta algorithm can deal with both the fluctuating nature of the RF 

variable importance measure and the interactions between the variables. 

Figure 2 in Kursa and Rudnicki (2010) shows an example of a Boruta result 

plot that displays the distribution of Z-scores from the iterations, and from 

which the ranking of the relative importance between variables can be derived.  

The Boruta package available for usage in R is utilized for the results in 

Section 4. We let the maximum number of iterations of the Boruta Algorithm 

be 100. The mean of the Z-scores from the 100 iterations are extracted from 

the results of the Boruta algorithm, and the variables are ranked based on this 

measure. In Section 4, the list of the top-30 ranked variables is reported and 

utilized for the purpose of selecting an optimal set of variables to forecast VIX 

in a random forest method. 

 

3. DATA and FORECASTING PROCEDURE 

3.1 Data 

We consider the sample period starting from April 5, 1990 and extending to 

January 15, 2013, matching that of the data used in Fernandes et al. (2014). 

The sample period includes a total of 5,740 daily observations of the VIX 

index and all exogenous variables. In Section 4.4, as a robustness check, we 

also consider recent data ranging from January 27, 2009 to December 31, 

2020 with a total of 3,005 daily observations of all variables.  

 

<< Insert Figure 2 about here>> 

 

Table 1 lists the descriptive statistics for the logarithm of the VIX index for 

the period from April 5, 1990 to January 15, 2013. It reports the mean, 

median, minimum, maximum, standard deviation, skewness, kurtosis, p-values 

of Jarque-Bera, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) test 

results, and the KPSS test statistic. The unit root test results show that the 
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logarithm of the VIX index is stationary, as the null hypothesis of unit root is 

rejected in the ADF and PP tests and the KPSS test cannot reject the null 

hypothesis of stationarity. 

 

<< Insert Table 1 about here>> 

 

This research considers 298 other macro-finance variables as exogenous 

covariates for forecasting the VIX index, and they consist of the following: the 

k-day continuously compounded returns on the S&P 500 index (k=1, 5, 10, 

22, 66) and the first difference of the logarithm of the volume of the S&P 500 

index; the k-day continuously compounded returns on the crude oil futures 

contract; the first difference of the logarithm of US dollar foreign exchange 

value on seven currencies (Australian dollar, Canadian dollar, Swiss frac, euro, 

British sterling pound, Japanese yen, and Swedish kroner) and a trade-

weighted average of the above foreign exchange values; the yield difference 

between Moody’s seasoned Aaa rated corporate bonds and Baa rated 

corporate bonds (credit spread); the difference between 10-year and 3-

month treasury constant maturity rates (term spread); the first difference of 

the logarithm of 10 other stock indices (NASDAQ-100, Dow Jones Industrial 

Average, FTSE ALL-Share index, FTSE-100 index, DAX Performance index, 

Swiss Market index, Nikkei 225, KOSPI index, Hang Seng index, and the BSE 

Sensex index); the first difference of the logarithm of world gold price; and 

the daily returns of the individual S&P 500 composites available since 1990 

(266 return series). All data were retrieved from Thomson Reuters 

Datastream and Federal Reserve Economic Data (FRED).  

 

3.2 Forecasting Procedure 

For direct comparison of results, this study uses the same forecasting 

methodology as Fernandes et al. (2014). Forecasts are made from a rolling 
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window of a fixed size. For each model, a rolling window of 2,500 time-series 

observations is used to estimate the model, and 3,240 out-of-sample 

forecasts are produced (February 29, 2000 – January 15, 2013). Direct 

forecasts are made with no consideration of forecasting the exogenous 

covariates, as in Medeiros et al. (2019). Since the covariates are high-

dimensional, it is natural to adopt the direct forecasting procedure, rather than 

the iterated forecasting procedure, for multi-step-ahead forecasts.  

Four different forecasting horizons of k-day(s) (k=1, 5, 10, 22) are 

considered. k-day(s)-ahead forecasts are made and mean squared error 

(MSE) and mean absolute error (MAE) are calculated for each model and 

forecasting horizon. The average MSE and MAE of the random forest are 

compared to those of the benchmark models. 

 

3.3 Benchmark Models 

The benchmarks on which the results are compared are the models whose 

performances are reported upon in Fernandes et al. (2014); namely, they are 

the random walk (RW) model, Autoregressive model with exogenous variables 

(ARX), heterogeneous autoregressive (HAR) model of Corsi (2009), and HAR 

model with exogeneous variables (HARX). The model specifications follow 

those described in Fernandes et al. (2014). For the models including 

exogeneous covariates, the 14 variables used in Fernandes et al. (2014) are 

used.3 In Section 4.4, as a robustness check, we also consider more machine 

learning methods. 

 

4. RESULTS 

4.1 Variable Rankings by the Boruta Algorithm 

                                           
3 The 14 variables are S&P k-day return, S&P 500 volume change, oil k-day return, 

trade-weighted USD change, credit spread, and term spread with k = 1,5,10,22,66. 
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For each forecasting horizon, the full dataset containing the first and second 

lag4 of all 299 variables is run on the Boruta algorithm. Each lag of each 

variable is treated as a separate variable, with the total number of covariates 

being 598. Of the 598 variables that were run on the Boruta algorithm, the 

number of variables confirmed to be ‘important’ are 138, 142, 147, and 

123 for the 1-day-ahead, 5-days-ahead, 10-days-ahead, and 22-days-

ahead forecasts, respectively. Table 2 lists the rankings of the top-30 

variables determined from the Boruta algorithm for each forecasting horizon. 5  

Overall, the variability in the variable rankings among the different 

forecasting horizon settings does not seem to be large, especially for the 

variables ranked among the top-20. For all forecasting horizons, the lagged 

value of the logarithm of VIX recorded the largest mean Z-score, with quite a 

margin from the exogenous variables. In addition, for all forecasting horizon 

settings, the top-2 ranked exogenous variables were credit spread and term 

spread (credit spread ranked first for 1/5/10-day(s)-ahead forecast setting 

while term spread ranked first for 22-days-ahead forecast setting). The list 

is followed by the continuously compounded multiple-days-returns on S&P 

500 and oil futures and the daily change rate in the S&P 500 index and the 

volume of the S&P 500. It is interesting to note that, aside from trade-

weighted USD change, these top-20 variables roughly correspond to the 14 

exogenous variables used in Fernandes et al. (2014). 

The difference in rankings among the forecasting horizons seems to be more 

visible for variables ranked afterward, most of which are composed of daily 

returns on other stock market indices and daily returns on individual prices of 

S&P 500 composites. For the 1/5/10-day(s)-ahead forecast settings, at least 

                                           
4 Following Fernandes et al. (2014), we consider the first and second lag of each 

covariate. One can use more lagged covariates. We also tried to use the full dataset 

containing additional third and fourth lag of all variables, and the results were similar. 
5 The full list of the rankings determined by Boruta is available upon request. 
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two of the three main stock market indices (NASDAQ-100, Dow Jones 

Industrial Average, and DAX Performance index) made it into the top-30 list. 

Comparatively, the list for 22-days-ahead forecast setting is dominated by 

the daily return series of the individual S&P 500 composites. 

These rankings are used to select the best subset of variables. That is, the 

optimal number of top ranked variables is derived, and this is considered as 

the dataset to be used for random forest.  

<< Insert Table 2 about here>> 

 

4.2 The Optimal Number of Variables  

A cross validation procedure was conducted to determine the optimal 

number of variables to be used in a random forest method. The procedure is 

straight forward: First, start with a dataset with no exogenous variables using 

only the first and second lags of VIX as input variables into random forest. 

The dataset is run on the random forest and the in-sample OOB MSE is 

recorded. Next, add on to the dataset one exogenous variable at a time based 

on the order of the rankings decided by the Boruta algorithm in Table 2. 

Finally, record the in-sample OOB MSE from each dataset and find the 

number of variables that produces the smallest forecast error. 

Figure 3 plots the change in the in-sample error as the dataset is 

sequentially expanded for each forecasting horizon. For the 1-day-ahead 

forecast, the picture seems less clear as it does not show a visible optimal 

point in terms of OOB MSE. However, for the 5/10/22-days-ahead forecasts, 

the results show a clear increasing trend in OOB MSE after a minimal point. 

According to the results, the optimal number of variables are 25, 17, 17, and 

11 for the 1/5/10/22-day(s)-ahead forecasts, respectively. Thus, among the 

598 covariates that are considered, the best subset of variables is derived for 

forecasting VIX in a random forest method while using the top-25/17/17/11 
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ranked variables according to the mean Z-scores derived from the Boruta 

algorithm. 

 

<< Insert Figure 3 about here>> 

 

4.3 Forecasting Results 

Table 3 shows the results of the out-of-sample forecasts of each model 

for each forecasting horizon. The table reports the average MSE, MAE, and 

their relative ratios compared to the RW model. Among the four benchmark 

models from Fernandes et al. (2014), the pure HAR model shows the best 

performance overall, except for the 22-days-ahead forecast horizon in which 

the HARX model records a smaller forecast error by a slight margin. 

Fernandes et al. (2014) claims that the relative success of the pure HAR 

model can be attributed to the very persistent nature of the VIX index, and 

that it is difficult to outperform the pure HAR process.6  

Comparing the above results to the performance of random forest on 

different datasets shows a substantially different picture. First, we consider a 

random forecast method using the same information as the benchmark models 

in Fernandes et al. (2014). The RF(14) in Table 3 shows the performance of 

random forest when using the dataset with only the exogenous covariates that 

were used by the benchmark models in Fernandes et al. (2014). While the 

forecasting performance of RF(14) is even worse than the RW model for the 

1-day-ahead forecast, the forecasting error drops significantly for 5/10/22-

days-ahead forecasts compared to the pure and augmented HAR models.  

Moreover, the relative accuracy of random forest compared to the RW and 

                                           
6 Fernandes et al. (2014) also reports the forecasting results of the HAR model 

augmented with neural network (NNHARX). NNHARX outperforms HAR and HARX 

models only in the 22-days-ahead forecast setting, but the difference in forecast 

errors is negligible and statistically insignificant. Thus, it can be said that their results 

show little evidence of non-linearity. 
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the linear benchmarks becomes more evident as the forecasting horizon 

increases. That is, the gap in forecasting error between the benchmark models 

and RF increases as the forecasting horizon approaches the 30-calendar-

days-ahead threshold. The relative MAE of RF(14) compared to the RW 

model are 1.08, 0.86, 0.78, and 0.64 for the 1/5/10/22-day(s)-ahead 

forecasting horizons, respectively. This corroborates the results of Medeiros 

et al. (2019) which find that the forecasting superiority of random forest 

compared to the linear models becomes more evident with longer forecasting 

horizons. 

The RF(598) in Table 3 shows the performance of random forest when 

the dataset includes all the first and second lags of 299 variables, whereas 

RF_Selected shows the performance of random forest using the dataset with 

the optimal number of the most important variables based on the Boruta 

algorithm, as derived through the variable selection process described in 

sections 4.1 and 4.2. The results show that selecting the optimal number of 

the most important variables using the Boruta algorithm further enhances the 

performance significantly. For the longer three forecasting horizons, 

RF_Selected is able to produce forecasts that are significantly more accurate 

than RF(14).  

 

<< Insert Table 3 about here>> 

 

Table 4 lists the p-values of the unconditional Giacomini-White test at 

different forecasting horizons. For the 1-day-ahead-forecasts, the 

forecasting ability of HAR is compared to all other models. It can be seen that 

the outperformance of HAR model in this setting is significant at the 5% level.  

For the 5/10/22-days-ahead forecasts, the performance of RF is 

compared to those of the benchmark models. Using the same covariates, the 

superior accuracy of RF(14) is statistically significant at the 0.1% level 
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compared to all linear benchmark models. Moreover, the superior predictive 

ability of RF_Selected is also significant at the 0.1% level compared to RF(14) 

and RF(598) . Thus, we can conclude that the gains from systematical variable 

selection using the Boruta algorithm is also statistically significant. 

 

<< Insert Table 4 about here>> 

 

Table 5 reports the test results of model confidence sets (MCS) of 

Hansen et al. (2011) at different forecasting horizons. The test is based on 

squared error losses. The shaded cells are the models included in the 50% 

MCS, along with their p-values. The results are unambiguous, with only one 

model included in the MCS for each forecasting horizon, and all with a uniform 

p-value of 1. Thus, the HAR model seems to be the best model for the 1-

day-ahead forecasts, while RF_Selected outperforms all other models for 

multi-day-ahead forecasts. 

 

<< Insert Table 5 about here>> 

 

Figure 4 compares the forecasts of RF_Selected and the HAR model for 

the period around the 2008 global financial crisis, specifically for the time 

stretching from February 2008 to August 2009. The black line shows the 

actual value of logarithmic of VIX, which reached its all-time peak in October 

2008. The red and blue lines show the 22-days-ahead forecasts of 

RF_Selected and the HAR model, respectively. It can be seen that the 

forecasts by RF_Selected are more accurate than those of the HAR model. 

RF_Selected catches the sharp upward trend of VIX much faster after the 

collapse of Lehman Brothers in September 2008, and it does the same for the 

downward trend after the peak of the financial crisis. Overall, while the gap in 

forecasting error between the two models seem to be consistent over the 



19 

 

whole forecasting period, it is in such highly volatile periods when the gap 

between the two models becomes much more evident.  

 

<< Insert Figure 4 about here>> 

 

4.4 Robustness Check with More Machine Learning Methods 

As a robustness check, we consider more machine learning methods and 

compare forecasts for the most recent 2-year period (January 2, 2019 to 

December 31, 2020, 505 daily observations). We adopt the same forecasting 

procedure and a rolling window of the same size (2,500 daily observations) is 

utilized. Thus, the dataset of our second sample runs from January 27, 2009 

to December 31, 2020 with a total of 3,005 daily observations of all variables. 

Along with the benchmark models reported in section 4.3, the following ML 

methods are included as additional benchmarks; the least absolute shrinkage 

and selection operator (LASSO), adaptive LASSO (adaLASSO), elastic net 

(Elnet), adaptive elastic net (adaElnet), complete subset regression (CSR), 

target factors (tFact), and a deep neural network (NN) 7 with two hidden 

layers and 32 and 16 nodes in each hidden layer. The model specifications of 

the ML benchmarks are described in Appendix A.  

For random forest, the same variable selection process as described in 

sections 4.1 and 4.2 was used to determine the predictors for RF_Selected. 

The rankings of the variables decided by the Boruta algorithm show little 

variation from those reported in Table 2, particularly among the top-20 

variables. 8  From the cross-validation procedure, the optimal numbers of 

variables for RF are found to be 21, 12, 14, and 14 for the 1/5/10/22-day(s)-

                                           
7 The optimal numbers of layers and nodes for NN are decided in advance based on 

cross validation procedures. 
8 The rankings from the Boruta algorithm for the second sample are available upon 

request. 
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ahead forecast horizons, respectively. 

Table 6 provides the forecasting results at different horizons. Among the 

benchmark models, the pure HAR model is no longer the outperforming model 

when the ML benchmarks are added. For the 1/5/10-day(s)-ahead forecasts, 

the CSR reports the smallest errors among the benchmarks. However, the 

difference compared to the rest of the benchmark models is quite minimal. For 

the 22-days-ahead forecasts, the NN model records the smallest forecast 

error among the benchmark models. 

 

<< Insert Table 6 about here>> 

 

The comparison between RF and the benchmarks shows a picture that is in 

line with that of the previous section. While RF(14) performs worse than the 

RW model for the 1-day horizon, it produces forecasts that are more accurate 

than all other benchmark models in multi-days horizons. The Giacomini-

White test results in Table 7 confirm that the predictive ability of RF(14) is 

superior to those of the benchmarks for the multi-step-ahead settings. For 

the 5-days horizon, the null hypotheses of equal predictability between RF(14) 

and the benchmarks are rejected at the 5% significance level, except for two 

cases (against LASSO and adaElnet) where they are only rejected at the 10% 

level. For the 10-days and 22-days horizons, RF(14) outperforms all 

benchmark models at the 1% level. 

Moreover, as was the case in the previous section, the gap in forecast 

error between RF and the linear benchmark models is magnified for the longer 

forecasting horizons. The relative average MAE of RF(14) to the RW model 

are 1.06, 0.90, 0.73, and 0.60 for the 1/5/10/22-day(s) horizons, respectively. 

The accuracy of RF_Selected demonstrates the benefits of using the Boruta 

algorithm for variable selection. For the multi-step-ahead forecasts, 

RF_Selected is clearly the outperforming model overall with the smallest 
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forecast error. In the 5-day horizon, the Giacomini-White test between 

RF_Selected and all other models except RF(14) is rejected at the 5% level. 

For 10-day and 22-day horizons, RF_Selected significantly outperforms all 

other models including RF(14) at the 1% level. Moreover, RF_Selected is the 

only model included in the 50% MCS with a p-value of 1 for the multi-step 

horizons. 

 

<< Insert Table 7 about here>> 

 

<< Insert Table 8 about here>> 

 

 

5. CONCLUSION 

The paper seeks to apply random forest and its variable importance measure 

to forecasting the CBOE Volatility Index (VIX). In particular, it seeks to 

improve upon the multi-days-ahead forecasting of VIX relative to those 

reported in the previous literature. Compared to the results of Fernandes et al. 

(2014), which find it is very hard to beat the pure HAR process in forecasting 

VIX, random forest could produce forecasts that are significantly more 

accurate than the HAR and augmented HAR models for multi-days forecasting 

horizons. Moreover, the superior predictability of random forest compared to 

the RW and benchmark linear models becomes more apparent as the 

forecasting horizon becomes longer. This is consistent with Medeiros et al.’s 

(2019) findings in the context of forecasting US inflation. 

Further improvements in forecasting performance are attained through a 

systematic selection of covariates among a high-dimensional dataset. Utilizing 

the Boruta algorithm, the rankings of the variables are extracted based on the 

permutation importance measure of random forest. Adopting only the optimal 

number of the selected most important covariates significantly enhances the 
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forecasting accuracy of random forest. It seems clear that variable selection 

functions as a crucial factor affecting the predictability of random forest.  

The robustness of the main results of the paper are confirmed through 

forecasting on the most recent period from 2018 to 2020. Moreover, 

compared to various other ML methods, the random forest method utilizing the 

Boruta algorithm provides superior multi-step-ahead forecasts.  

While this paper focuses solely on the random forest, it would be interesting 

to investigate other ML methods that can capture the nonlinear characteristics 

of VIX, especially deep learning methods such as long short-term memory. It 

would also be interesting to investigate whether our methodology can provide 

better multi-step-ahead forecasts of macroeconomic time series. These 

issues represent future research topics.   
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Appendix A 

 

1. The Shrinkage Methods  

To improve ordinary least squares (OLS) regression, the family of 

shrinkage methods takes the form of penalized regression. This is similar to 

an OLS regression in that the objective is to minimize the residual sum of 

squares (RSS), but they add a term that imposes a size constraint on the 

coefficient estimates.  

�̂�𝛽 = 𝑎𝑎𝑝𝑝𝑎𝑎 𝑚𝑚𝑚𝑚𝑛𝑛𝛽𝛽𝑗𝑗 ���𝑌𝑌 − 𝑋𝑋�̂�𝛽�
𝑛𝑛

𝑖𝑖=1

+ �𝑝𝑝(𝛽𝛽𝑗𝑗; 𝜆𝜆)
𝑝𝑝

𝑗𝑗=1

� 

The different models among these methods are distinguished by the 

penalty function 𝑝𝑝(𝛽𝛽𝑗𝑗; 𝜆𝜆) , which regularizes the coefficient estimates and 

shrinks the coefficients of variables with less explanatory power. The 

shrinkage penalty term depends on the tuning parameter 𝜆𝜆, which regulates 

the amount of shrinkage imposed on the coefficients; a higher 𝜆𝜆 results in a 

stronger shrinkage of the regression coefficients, while 𝜆𝜆 = 0 would reduce 

the model to an OLS with no shrinkage.  

 

1.1 Least Absolute Shrinkage and Selection Operator (LASSO) 

LASSO was proposed by Tibshirani (1996), in which the penalty function is 

given as 

�𝑝𝑝(𝛽𝛽𝑗𝑗; 𝜆𝜆)
𝑝𝑝

𝑗𝑗=1

= 𝜆𝜆��𝛽𝛽𝑗𝑗�
𝑝𝑝

𝑗𝑗=1

 

Compared to the primitive shrinkage method—ridge regression, described by 

Hoerl & Kennard (1970)—the 𝐿𝐿1 penalty of LASSO is able to shrink the less 

relevant variables to exactly zero via soft thresholding, and it thus presents 

the feature of variable selection. Moreover, due to the absolute value operator 
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in the penalty term, LASSO does not have a closed form solution, and it is 

computed through algorithmic methods. 

 

1.2 Adaptive LASSO 

Consistency of variable selection by LASSO is only achieved under strict 

conditions, and Zou (2006) proposed the adaptive LASSO to overcome this 

issue. The penalty term includes a weighting parameter that is derived from a 

first-step estimation. The penalty function is given as 

�𝑝𝑝(𝛽𝛽𝑗𝑗; 𝜆𝜆,𝑤𝑤𝑗𝑗)
𝑝𝑝

𝑗𝑗=1

= 𝜆𝜆�𝑤𝑤𝑗𝑗�𝛽𝛽𝑗𝑗�
𝑝𝑝

𝑗𝑗=1

 

where adaptive weights 𝑤𝑤𝑗𝑗 = � 1
𝛽𝛽𝚥𝚥�
�
−1

 are used to penalize different coefficients 

in the LASSO penalty. Adaptive LASSO can be solved through the same 

efficient algorithm used to solve LASSO. 

 

1.3 Elastic Net 

The elastic net is a compromise between ridge regression and LASSO. 

While it retains the variable selection feature of LASSO, it also shrinks the 

coefficients of correlated variables toward each other similar to the ridge 

regression. The penalty function takes the form of a weighted mean of ridge 

and LASSO penalties. 

�𝑝𝑝(𝛽𝛽𝑗𝑗; 𝜆𝜆)
𝑝𝑝

𝑗𝑗=1

= 𝜆𝜆�𝛼𝛼𝛽𝛽𝑗𝑗2 + (1 − 𝛼𝛼)�𝛽𝛽𝑗𝑗�
𝑝𝑝

𝑗𝑗=1

 

The elastic net includes the special cases of LASSO ( 𝛼𝛼 = 0 ) and ridge 

regression (𝛼𝛼 = 1). In this paper, the 𝛼𝛼 parameter is set to be 0.5. This paper 

also considers an adaptive version of elastic net which includes adaptive 

weights as in adaptive LASSO. 

 

2. Complete Subset Regression (Elliott, 2011) 
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Another possible approach to handling a high-dimensional dataset is 

subset selection for linear regression. While there are a number of strategies 

that can be used for subset selection, testing all possible combinations of 

predictor variables is computationally demanding and becomes infeasible when 

there is a very large number of candidate variables.  

Complete subset regression (CSR) proposed by Elliott et al. (2013, 2015) 

takes an ensemble approach. For a given set of potential regressors, CSR 

combines forecasts from all possible linear regression models while keeping 

the number of predictors fixed. For a dataset with K possible regressors, the 

number of k-variate models (k ≤ K ) is 𝑛𝑛𝑘𝑘,𝐾𝐾 = 𝐾𝐾!
((𝐾𝐾−𝑘𝑘)!𝑘𝑘!)

 . The set of models for 

a fixed value k is referred to as a complete subset, and the final forecast made 

by CSR is the equal-weighted average of forecasts from all models within the 

complete subset indexed by k. In this paper, we use k=4 to calculate the CSR 

forecasts. 

   

3. Target Factors (Bai & Ng, 2008) 

Numerous forecasting methodologies using factor augmented models have 

recently been developed. The idea of these factor models is to first estimate 

the factors from a large number of predictors using the method of principal 

components, and then to augment these factors to a linear forecasting equation. 

To refine the factor augmented forecasting methodology, Bai & Ng (2008) 

proposed targeting the predictors using hard and soft thresholding rules. The 

underlying rationale is that computing the principal components from all 

predictors may result in noisy factors, and that only the predictors with high 

forecasting power should be used.  

This paper uses the hard thresholding method suggested in Bai & Ng 

(2008) and implemented by Medeiros et al. (2019). Let 𝑦𝑦𝑡𝑡 be the dependent 

variable or the logarithm of VIX, let 𝑋𝑋𝑖𝑖,𝑡𝑡 (i=1,…,q) be the candidate predictors, 
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and let 𝑊𝑊𝑡𝑡 be a set of controls. Following Bai & Ng (2008), the lagged values 

of 𝑦𝑦𝑡𝑡 and a constant are used as 𝑊𝑊𝑡𝑡. 

1. For i=1,…, q, perform a regression of 𝑦𝑦𝑡𝑡+ℎ on 𝑊𝑊𝑡𝑡 and 𝑋𝑋𝑖𝑖,𝑡𝑡 and compute 

the t-statistics corresponding to the coefficient of 𝑋𝑋𝑖𝑖,𝑡𝑡. 

2. Choose a significance level 𝛼𝛼 and find the set of significant variables 

𝑧𝑧𝑡𝑡(𝛼𝛼) based on the computed t-statistics. 

3. Estimate the factors 𝐹𝐹𝑡𝑡 from 𝑧𝑧𝑡𝑡(𝛼𝛼). 

4. Regress 𝑦𝑦𝑡𝑡+ℎ on 𝑊𝑊𝑡𝑡 and 𝑓𝑓𝑡𝑡, where 𝑓𝑓𝑡𝑡 ⊂ 𝐹𝐹𝑡𝑡 and the number of factors in 

𝑓𝑓𝑡𝑡 is decided using BIC.  
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Appendix B. Tables and Figures 

 
 

Table 1: Descriptive Statistics for Logarithm of VIX 

(April 5, 1990 – January 15, 2013) 

Mean 2.951 

Median 2.931 

Minimum 2.231 

Maximum 4.393 

Standard Deviation 0.349 

Skewness 0.547 

Kurtosis 3.274 

Jarque-Bera 0.000 

ADF 0.000 

PP 0.000 

KPSS 0.064 

 
Notes: Jarque-Bera, ADF, and PP respectively represent the p-values of Jarque-

Bera, Augmented Dickey-Fuller, and Phillips-Perron tests. KPSS is the KPSS test 

statistic, and its critical values are 0.119, 0.146, and 0.216 at the levels of 10%, 5%, 

and 1%, respectively.
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Table 2: Variable Rankings Determined by Boruta Algorithm 

 
1-day-ahead 5-days-ahead 10-days-ahead 22-days-ahead 

1 CBOEVIX(1) CBOEVIX(1) CBOEVIX(1) CBOEVIX(1) 

2 CBOEVIX(2) CBOEVIX(2) CBOEVIX(2) CBOEVIX(2) 

3 BaaAaa(1) BaaAaa(1) BaaAaa(1) T10Y3M(1) 

4 BaaAaa(2) BaaAaa(2) BaaAaa(2) BaaAaa(1) 

5 T10Y3M(1) T10Y3M(1) T10Y3M(1) BaaAaa(2) 

6 T10Y3M(2) T10Y3M(2) T10Y3M(2) T10Y3M(2) 

7 SP_66day(1) SP_66day(2) SP_66day(1) SP_66day(1) 

8 SP_66day(2) SP_66day(1) SP_66day(2) SP_66day(2) 

9 SP_22day(2) SP_22day(2) Oil_66day(1) Oil_66day(2) 

10 SP_22day(1) SP_22day(1) SP_22day(1) Oil_66day(1) 

11 SP_10day(1) Oil_66day(1) SP_22day(2) SP_22day(2) 

12 SP_10day(2) Oil_66day(2) Oil_66day(2) SP_22day(1) 

13 SP_5day(1) SP_10day(2) SP_10day(2) SP_10day(2) 

14 Oil_66day(2) SP_10day(1) SP_10day(1) SP_10day(1) 

15 Oil_66day(1) SP_5day(1) SP_5day(1) SP_5day(1) 

16 SP_5day(2) SP_5day(2) SP_5day(2) SP_5day(2) 

17 S&P_1day(1) Oil_22day(2) Oil_22day(2) Oil_22day(2) 

18 S&P_MV(1) Oil_22day(1) Oil_22day(1) Oil_22day(1) 

19 S&P_1day(2) S&P_1day(1) S&P_1day(1) FITB(2) 

20 S&P_MV(2) S&P_MV(1) S&P_MV(1) FITB(1) 

21 Oil_22day(2) S&P_1day(2) S&P_1day(2) KEY(2) 

22 DJINDUS(1) S&P_MV(2) S&P_MV(2) AIG(1) 

23 Oil_22day(1) BAC(1) BAC(1) BAC(1) 

24 GE(1) DJINDUS(1) FITB(2) @HBAN(1) 

25 BAC(1) FITB(2) GE(1) AIG(2) 

26 NASA100(1) GE(1) FITB(1) BAC(2) 

27 BAC(2) BAC(2) AIG(2) S&P_1day(1) 

28 DAXINDX(1) DAXINDX(1) DJINDUS(1) KEY(1) 

29 GE(2) FITB(1) NASA100(2) S&P_MV(1) 

30 DAXINDX(2) DJINDUS(1) BAC(2) S&P_MV(2) 

Notes: The following are the abbreviations used. CBOEVIX: lagged values of the VIX index; 
BaaAaa: credit spread; T10Y3M: term spread; SP_kday: k-day(s) returns on the S&P 500 
index; Oil_kday: k-day(s) returns on oil futures; DJINDUS: daily returns on the Dow Jones 
Industrial Average; NASA100: daily returns on Nasdaq-100 Index; DAXINDX: daily returns on 
the DAX Performance Index; and S&P_MV: daily change in market volume of the S&P 500. All 
other abbreviations not mentioned correspond to the daily returns on individual S&P 500 
composites, which are presented by their ticker symbols as listed on the New York Stock 
Exchange and the Nasdaq Stock Exchange. The numbers in parenthesis refer to the lag of each 
variable.
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Table 3: Forecasting Performances at Different Horizons 

  MSE % MAE %   MSE % MAE %   MSE % MAE %   MSE % MAE % 

  One Day Ahead     Five Days Ahead     Ten Days Ahead     Twenty-two Days Ahead 

RW 0.0040  0.0458    0.0142 
 

0.0891 
 

  0.0219 
 

0.1115 
 

  0.0427 
 

0.1540 
 

ARX 0.0040 1.00 0.0459 1.00   0.0136 0.96 0.0877 0.98   0.0214 0.98 0.1107 0.99   0.0408 0.95 0.1498 0.97 

HAR 0.0039 0.97 0.0454 0.99 
 

0.0133 0.94 0.0873 0.98 
 

0.0209 0.96 0.1095 0.98 
 

0.0399 0.93 0.1497 0.97 

HARX 0.0040 1.00 0.0458 1.00 
 

0.0136 0.96 0.0875 0.98 
 

0.0214 0.98 0.1103 0.99 
 

0.0409 0.96 0.1491 0.97 

RF(14) 0.0044 1.10 0.0490 1.07   0.0104 0.73 0.0767 0.86   0.0135 0.62 0.0870 0.78   0.0177 0.41 0.0992 0.64 

RF(598) 0.0047 1.19 0.0507 1.11   0.0126 0.89 0.0854 0.96   0.0170 0.78 0.0993 0.89   0.0244 0.57 0.1180 0.77 

RF_Selected 0.0044 1.10 0.0492 1.07   0.0098 0.69 0.0744 0.84   0.0125 0.57 0.0837 0.75   0.0152 0.35 0.0916 0.59 

Notes: Forecasting performances of different models for the test period from February 29, 2000 to January 15, 2013 (3,240 daily observations). The 

results of the benchmark models (RW/ARX/HAR/HARX) are derived using the same model specifications as those reported in Fernandes et al. (2014).
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Table 4: Giacomini-White Test for Predictive Ability 

One Day Ahead  Five Days Ahead 

 HAR    RF_14 RF_Selected 

RW 0.0246  RW 0.0000 0.0000 

ARX 0.0056  ARX 0.0000 0.0000 

HARX 0.0008  HAR 0.0000 0.0000 

RF_14 0.0000  HARX 0.0000 0.0000 

RF_298 0.0000  RF_14  0.0000 

RF_Selected 0.0000  RF_298  0.0000 

       
Ten Days Ahead  Twenty-two Days Ahead 

  RF_14 RF_Selected    RF_14 RF_Selected 

RW 0.0000 0.0000  RW 0.0000 0.0000 

ARX 0.0000 0.0000  ARX 0.0000 0.0000 

HAR 0.0000 0.0000  HAR 0.0000 0.0000 

HARX 0.0000 0.0000  HARX 0.0000 0.0000 

RF_14  0.0000  RF_14  0.0000 

RF_298  0.0000  RF_298  0.0000 

Notes: The p-values of the Giacomini-White test for superior predictive ability between the 

HAR model and the other models for one-day-ahead setting, as well as between RF_14 & 

RF_Selected models and the other models for longer forecasting horizons. 
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Table 5: MCS Test Results 

Model Confidence Set 

 1-day 5-day 10-day 22-day 

RW     

ARX     

HAR 1    

HARX     

RF_14     

RF_298     

RF_Selected  1 1 1 

Notes: For each forecasting horizon setting, the shaded cells show the models that are included 

in the 50% Model Confidence Set (MCS), using squared error as the loss function. The MCS p-

values are reported, where a higher p-value indicate that the model is more likely to be the 

“best” model. 
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Table 6: Forecasting Performances for Second Sample 

  MSE % MAE %   MSE % MAE %   MSE % MAE %   MSE % MAE % 

  One Day Ahead     Five Days Ahead     Ten Days Ahead     Twenty-two Days Ahead 

RW 0.0067 
 

0.0578 
  

0.0288 
 

0.1188 
  

0.0570 
 

0.1696 
  

0.1282 
 

0.2480 
 

ARX 0.0069 1.03 0.0563 0.97 
 

0.0305 1.06 0.1149 0.97 
 

0.0578 1.01 0.1577 0.93 
 

0.1183 0.92 0.2198 0.89 

HAR 0.0068 1.01 0.0564 0.98  0.0295 1.02 0.1160 0.98  0.0557 0.98 0.1553 0.92  0.1125 0.88 0.2136 0.86 

HARX 0.0069 1.03 0.0567 0.98  0.0302 1.05 0.1144 0.96  0.0576 1.01 0.1565 0.92  0.1197 0.93 0.2215 0.89 

LASSO 0.0068 1.01 0.0560 0.97  0.0301 1.04 0.1146 0.96  0.0562 0.99 0.1515 0.89  0.1158 0.90 0.2150 0.87 

adaLASSO 0.0068 1.01 0.0567 0.98  0.0295 1.02 0.1139 0.96  0.0554 0.97 0.1531 0.90  0.1143 0.89 0.2163 0.87 

Elnet 0.0069 1.02 0.0559 0.97  0.0309 1.07 0.1152 0.97  0.0568 1.00 0.1518 0.89  0.1160 0.90 0.2153 0.87 

adaElnet 0.0066 0.99 0.0562 0.97  0.0298 1.03 0.1138 0.96  0.0552 0.97 0.1528 0.90  0.1132 0.88 0.2158 0.87 

CSR 0.0066 0.99 0.0555 0.96  0.0289 1.00 0.1138 0.96  0.0541 0.95 0.1529 0.90  0.1079 0.84 0.2089 0.84 
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tFact 0.0066 0.98 0.0557 0.96  0.0291 1.01 0.1162 0.98  0.0548 0.96 0.1499 0.88  0.1142 0.89 0.2182 0.88 

NN 0.0102 1.51 0.0690 1.19  0.0311 1.08 0.1237 1.04  0.0558 0.98 0.1641 0.97  0.0849 0.66 0.1989 0.80 

RF(14) 0.0085 1.26 0.0614 1.06  0.0241 0.84 0.1067 0.90  0.0357 0.63 0.1236 0.73  0.0556 0.43 0.1498 0.60 

RF(598) 0.0094 1.40 0.0639 1.11  0.0303 1.05 0.1202 1.01  0.0466 0.82 0.1440 0.85  0.0820 0.64 0.1794 0.72 

RF_Selected 0.0085 1.27 0.0617 1.07  0.0230 0.80 0.1041 0.88  0.0323 0.57 0.1163 0.69  0.0460 0.36 0.1380 0.56 

Notes: Forecasting performances of different models for the test period from November 28, 2018 to November 27, 2020 (504 daily observations), 

using a rolling window of 2,500 daily observations. The results of the benchmark models (RW/ARX/HAR/HARX) are derived using the same model 

specifications as those reported in Fernandes et al. (2014).
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Table 7: Giacomini-White Test for Predictive Ability (Second Sample) 
One Day Ahead  Five Days Ahead 

 CSR    RF_14 RF_Selected 

RW 0.0002  RW 0.0185 0.0031 

ARX 0.1001  ARX 0.0434 0.0157 

HAR 0.0023  HAR 0.0043 0.0013 

HARX 0.0350  HARX 0.0476 0.0175 

LASSO 0.1111  LASSO 0.0525 0.0260 

adaLASSO 0.0027  adaLASSO 0.0488 0.0186 

Elnet 0.1858  Elnet 0.0477 0.0245 

adaElnet 0.0483  adaElnet 0.0519 0.0186 

tFact 0.2086  CSR 0.0293 0.0123 

NN 0.0000  tFact 0.0032 0.0012 

RF_14 0.0000  NN 0.0002 0.0000 

RF_298 0.0000  RF_14  0.1281 

RF_Selected 0.0000  RF_298  0.0000 

       

Ten Days Ahead  Twenty-two Days Ahead 

  RF_14 RF_Selected    RF_14 RF_Selected 

RW 0.0000 0.0000  RW 0.0000 0.0000 

ARX 0.0001 0.0000  ARX 0.0021 0.0011 

HAR 0.0000 0.0000  HAR 0.0008 0.0009 

HARX 0.0002 0.0000  HARX 0.0026 0.0013 

LASSO 0.0010 0.0001  LASSO 0.0025 0.0017 

adaLASSO 0.0002 0.0000  adaLASSO 0.0014 0.0008 

Elnet 0.0016 0.0002  Elnet 0.0026 0.0019 

adaElnet 0.0001 0.0000  adaElnet 0.0015 0.0008 

CSR 0.0000 0.0000  CSR 0.0006 0.0006 

tFact 0.0010 0.0001  tFact 0.0015 0.0007 

NN 0.0000 0.0000  NN 0.0001 0.0000 

RF_14  0.0010  RF_14  0.0020 

RF_298  0.0000  RF_298  0.0010 

Notes: The p-values of the Giacomini-White test for superior predictive ability between the 

CSR model against the other models for one-day-ahead setting, as well as between RF_14 & 

RF_Selected models against the other models for multi-days-ahead forecasting horizons.  
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Table 8: MCS Test (Second Sample) 

Model Confidence Set 

  1-day 5-day 10-day 22-day 

RW 1     

ARX 0.7112     

HAR 0.9844     

HARX 0.5536     

LASSO 0.9660     

adaLASSO 0.9950     

Elnet 0.7202     

adaElnet 1     

CSR 1     

tFact 1     

RF_14      

RF_298      

RF_Selected   1 1 1 

Notes: For each forecasting horizon setting, the shaded cells show the models that are included 

in the 50% Model Confidence Set (MCS), using squared error as the loss function. The MCS p-

values are reported, where a higher p-value indicates that the model is more likely to the “best” 

model. 
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Figure 1: Example of a Regression Tree 

 

 

 

Figure 2: Logarithm of VIX (April 5, 1990 – January 15, 2013) 
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Figure 3: Number of Variables and In-Sample OOB MSE 

 

Notes: For each forecasting horizon, the changes in in-sample out-of-bag (OOB) mean 

squared error (MSE) are plotted as variables that are added to the dataset based on the order 

of the rankings decided by the Boruta algorithm. 
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Figure 4: Comparison of Forecasts Between RF and HAR Model 

Notes: The logarithm of VIX from February 13, 2008 to August 12, 2009 (black line), along 

with the 22-days-ahead forecasts of RF_Selected (red line) and HAR (blue line) models. 
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